

Vision-Language Modeling:

Representation, Generation, and the Road to Multimodal Reasoning

Yichao Cai

Lecture 10, Statistical Machine Learning, Sem. 2, 2025

School of Computer and Mathematical Sciences, The University of Adelaide

Contents

- Backgrounds on Representation Learning
- 2 Motivation of Vision-Language Modeling
- 3 Contrastive Vision-Language Foundation Models
- 4 Improving Contrastive VLMs through Post-Hoc Adaptation
- 5 Theoretical Perspective on Multimodal Contrastive Learning
- 6 Application: Generative Diffusion Models Conditioned on VLM Encoders
- 7 Multimodal LLMs: From Representation to Reasoning
- 8 Wrap-Up and Discussions

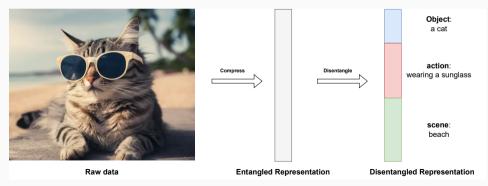
Backgrounds on Representation

Learning

What is a Representation?

- Raw data is high-dimensional & unstructured.
- Representation = transformed, structured form.

- Captures meaningful semantic factors.
- Enables learning and generalization.



Why Learn Representations?

- · Reduce dimensionality.
- Remove noise and redundancy.
- · Capture underlying structure.

- · Enable transfer across tasks.
- Support interpretability.

Predictive Tasks

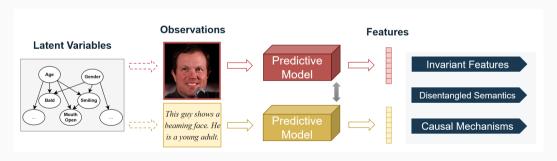
- · Goal: predict target from input.
- Examples:
 - Classification
 - · Regression
 - Detection / Segmentation
 - · Or even, complex reasoning tasks
- · Representation must be task-relevant and environment-shift robust.
- Evaluated by accuracy / error.

Generative Tasks

- · Goal: model or generate data.
- Examples:
 - · Image / text generation
 - · Inpainting, super-resolution
 - · Diffusion / VAE / GANs
- · Representation should capture **data structure**, if we desire contraollability.
- Evaluated by fidelity, diversity, likelihood.

A Latent Generative Perspective of Observational Data

Hypothesis – A Generative Perspective: Image—text pairs (or generally speaking, observations) are **generated** from a **shared latent space** (scene semantics, attributes, viewpoint, linguistic intent); our goal is to learn representations that **align with** this latent space.

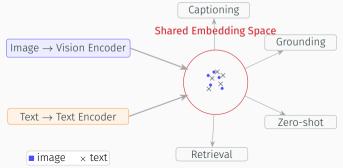


Human face image from the CelebA-HQ dataset.

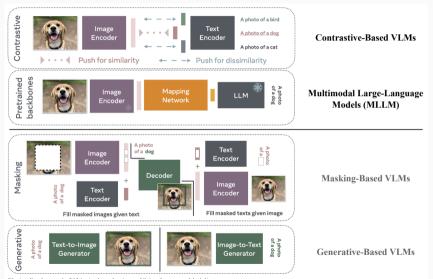
Motivation of Vision-Language Modeling

Why Vision-Language Models (VLMs)?

- Machines see **pixels (i.e., unstructured data)** but often lack semantic understanding; Language provides **semantic structure and abstraction**.
- Goal: learn a meaningful, modality-shared representation, that Enables interpretable prediction & reasoning, e.g., retrieval, zero-shot, captioning, etc.



Families of VLMs



Fusion vs. Alignment: Two Ways to Combine Modalities

Alignment (dual encoders: CLIP/ALIGN/SigLIP)

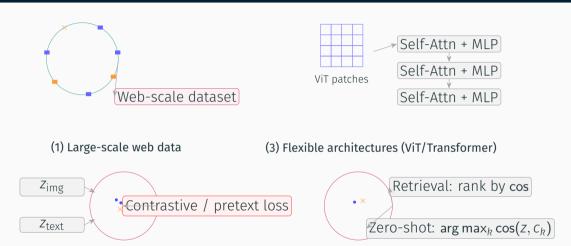
- · Learn a shared image-text embedding space.
- Contrastive training (InfoNCE: multi-positive), web-scale.
- · Strengths: highly scalable, fast inference, strong zero-shot & retrieval.
- · Limits: needs paired data; weaker fine-grained grounding unless augmented.

Rule of thumb: Alignment for breadth & zero-shot. Fusion for reasoning & grounding.

Fusion (cross-attention: LLaVA/Qwen-VL)

- · Joint modeling of image & text tokens (e.g., cross-attn / Q-Former).
- Trained with task supervision (VQA, captioning, grounding).
- · Strengths: better reasoning, localization, stepwise answers.
- · Limits: heavier compute/memory: less task-agnostic reuse.

Key Ingredients of VLMs



(2) Contrastive or pretext objectives

(4) Meaningful evaluation, e.g., Zero-shot & VQA

Contrastive Vision-Language Foundation Models

CLIP: Learning from Web-scale Supervision

THE UNIVERSITY OF ADELAIDE

- Dual-encoder: ViT (or, CNNs) + text Transformer.
- Data: 400M image-text pairs.

- Trained with symmetric contrastive loss.
- Emergent zero-shot transfer.

high waist sleeveless mini soft jeans dress frilled women ruffles casual summer sundress short denim beach dress cotton

DragonSpeed reveals revised plans for IndyCar, IMSA, ELMS

Man on moving walkway at Dublin Airport

https://huggingface.co/datasets/laion/relaion400m



What CLIP Learns

Learning objective - Symmetric contrastive loss (InfoNCE):

Normalize:
$$\tilde{\mathbf{z}}_i = \frac{\mathbf{z}_i}{\|\mathbf{z}_i\|}$$
, $\tilde{\mathbf{t}}_j = \frac{\mathbf{t}_j}{\|\mathbf{t}_j\|}$, Feature similarity: $s_{ij} = \frac{\tilde{\mathbf{z}}_i^\top \tilde{\mathbf{t}}_j}{\tau}$

$$\mathcal{L}_{i \to t} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(s_{ii})}{\sum_{j=1}^N \exp(s_{ij})}, \qquad \mathcal{L}_{t \to i} = -\frac{1}{N} \sum_{j=1}^N \log \frac{\exp(s_{jj})}{\sum_{i=1}^N \exp(s_{ij})}$$

$$\mathcal{L} = \frac{1}{2} (\mathcal{L}_{i \to t} + \mathcal{L}_{t \to i}) \quad \text{with temperature } \tau \text{ (learned)}.$$

What CLIP Learns

Learning objective - Symmetric contrastive loss (InfoNCE):

Normalize:
$$\tilde{\mathbf{z}}_i = \frac{\mathbf{z}_i}{\|\mathbf{z}_i\|}$$
, $\tilde{\mathbf{t}}_j = \frac{\mathbf{t}_j}{\|\mathbf{t}_j\|}$, Feature similarity: $\mathbf{s}_{ij} = \frac{\tilde{\mathbf{z}}_i^\top \tilde{\mathbf{t}}_j}{\tau}$

$$\mathcal{L}_{i \to t} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\mathbf{s}_{ii})}{\sum_{j=1}^N \exp(\mathbf{s}_{ij})}, \qquad \mathcal{L}_{t \to i} = -\frac{1}{N} \sum_{j=1}^N \log \frac{\exp(\mathbf{s}_{jj})}{\sum_{i=1}^N \exp(\mathbf{s}_{ij})}$$

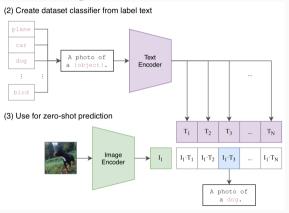
$$\mathcal{L} = \frac{1}{2} (\mathcal{L}_{i \to t} + \mathcal{L}_{t \to i}) \quad \text{with temperature } \tau \text{ (learned)}.$$

What CLIP facilitates?

- · Semantic alignment across-modality: "red car", "dog wearing hat".
- · Compositional reasoning in embedding space.
- Transferable representations for zero-shot tasks with text prompts.

Inference with CLIP

After training:



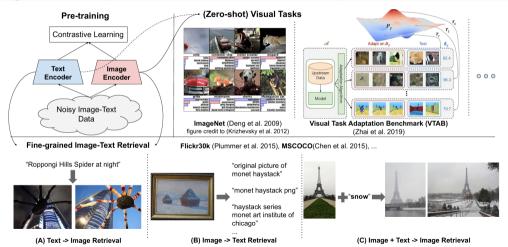
Limitations of CLIP:

- Noisy captions (reporting bias).
- Poor domain transfer (e.g., medical, scientific).
- Lacks causal or spatial grounding.

A. Radford, et al., 2021, CLIP

ALIGN: Scaling Beyond Clean Data

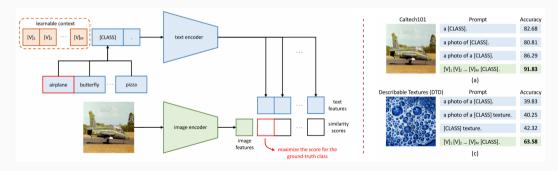
Larger-Scale Noisy web data (1.8 B) \Rightarrow More robust representations.



Improving Contrastive VLMs through Post-Hoc Adaptation

CoOp: Improving CLIP Inference through Context Optimization

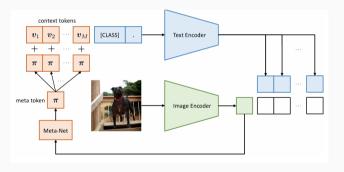
CoOp (Context Optimization) replaces hand-crafted text prompts in CLIP with learnable context tokens: it freezes the image/text encoders and optimizes the prompt vectors end-to-end on a small labeled set, yielding stronger zero-/few-shot recognition without retraining CLIP.



K. Zhou, et al., 2022, Learning to Prompt for Vision-Language Models

CoCoOp: Conditional Prompt Learning for Vision-Language Models

CoCoOp improves on CoOp by making the prompt **input-conditional**—a lightweight meta-network generates prompt context from each image's features, yielding better generalization to unseen classes/domains while keeping CLIP frozen.



K. Zhou, et al., 2022, Conditional Prompt Learning for Vision-Language Models

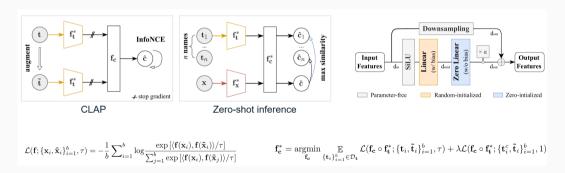
CLAP: Contrastive Learning with Augmented Prompts

Motivation: Image-text share latent semantics ⇒ transfer across modalities; enforcing invariances via *text* is more precise and efficient than editing *images*.



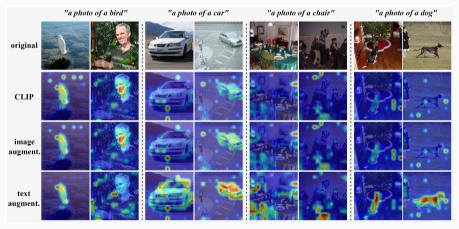
CLAP: Contrastive Learning with Augmented Prompts

Method: Adapt a pretrained CLIP with contrastive learning and augmented text prompts (CLAP) to disentangle **object-class** semantics from nuisances, improving downstream accuracy and robustness.



CLAP: Contrastive Learning with Augmented Prompts

Qualitative results: Embeddings from baseline CLIP vs image-augmented adaptation vs text/prompt-augmented adaptation.

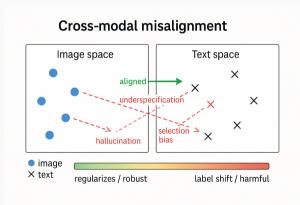


Theoretical Perspective on Multimodal Contrastive Learning

Phenomenon: Images and Captions are Not Pefectly aligned

Motivation: Image-caption datasets exhibit cross-modal misalignment between visual content and text (e.g., underspecification, or perturbation).

Can we model these noise patterns formally? And, When do they hurt vs. help (e.g., robustness, generalization)?



What Does Multimodal Contrastive Learning Optimize?

Standard MMCL loss:

$$\mathcal{L}_{\mathsf{MMCL}}(f_{\mathsf{X}}, f_{\mathsf{t}}) = -\frac{1}{2K} \sum_{j=1}^{K} \left[\log \frac{e^{\kappa(f_{\mathsf{X}}(\mathsf{X}_{j}), f_{\mathsf{t}}(\mathsf{t}_{j}))/\tau}}{\sum_{j} e^{\kappa(f_{\mathsf{X}}(\mathsf{X}_{j}), f_{\mathsf{t}}(\mathsf{t}_{j}))/\tau}} + \log \frac{e^{\kappa(f_{\mathsf{X}}(\mathsf{X}_{j}), f_{\mathsf{t}}(\mathsf{t}_{j}))/\tau}}{\sum_{j} e^{\kappa(f_{\mathsf{X}}(\mathsf{X}_{j}), f_{\mathsf{t}}(\mathsf{t}_{j}))/\tau}} \right]$$

Asymptotically (large *K*):

$$\mathcal{L}_{\text{MMCL}} \implies \mathbb{E} \|f_{x}(x) - f_{t}(t)\|^{2} - \frac{1}{2} \Big[H(f_{x}(x)) + H(f_{t}(t)) \Big]$$

What Does Multimodal Contrastive Learning Optimize?

Standard MMCL loss:

$$\mathcal{L}_{\mathsf{MMCL}}(f_{\mathsf{X}}, f_{\mathsf{t}}) = -\frac{1}{2K} \sum_{i=1}^{K} \left[\log \frac{e^{\kappa (f_{\mathsf{X}}(\mathsf{X}_i), f_{\mathsf{t}}(\mathsf{t}_i))/\tau}}{\sum_{j} e^{\kappa (f_{\mathsf{X}}(\mathsf{X}_i), f_{\mathsf{t}}(\mathsf{t}_j))/\tau}} + \log \frac{e^{\kappa (f_{\mathsf{X}}(\mathsf{X}_i), f_{\mathsf{t}}(\mathsf{t}_i))/\tau}}{\sum_{j} e^{\kappa (f_{\mathsf{X}}(\mathsf{X}_j), f_{\mathsf{t}}(\mathsf{t}_i))/\tau}} \right]$$

Asymptotically (large *K*):

$$\mathcal{L}_{\mathsf{MMCL}} \implies \mathbb{E} \|f_{\mathsf{X}}(\mathsf{X}) - f_{\mathsf{t}}(\mathsf{t})\|^2 - \frac{1}{2} \Big[H(f_{\mathsf{X}}(\mathsf{X})) + H(f_{\mathsf{t}}(\mathsf{t})) \Big]$$

Interpretation: Contrastive Learning =

· Alignment: pull paired features together

$$\downarrow ||f_x(x) - f_t(t)||^2$$

· Entropy maximization: preserve information within each modality

$$\uparrow H(f_X(x)), \uparrow H(f_t(t))$$

A Theory On the Value of Cross-Modal Misalignment

Theory framework: Y. Cai et al., 2025 introduce a latent variable model where each modality is generated from shared semantics with modality-specific biases.

Selection Bias (0): Shared semantics excluded from the text modality. Perturbation Bias (p): Spurious or altered semantics added to text.

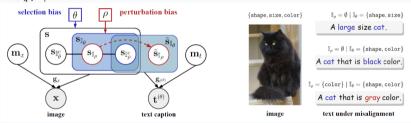
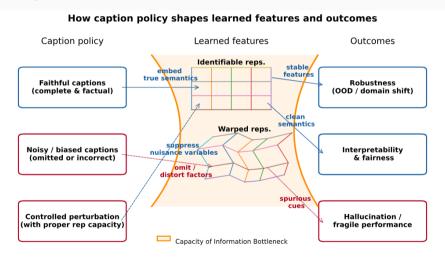


Illustration of our latent variable model with semantic misalignment.

Main Result: Contrastive learning consistently identifies unbiased shared semantics, regardless of latent causal structure, explaining why CLIP-like models succeed despite noise.

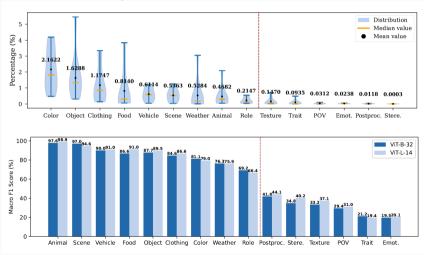
A Theory On the Value of Cross-Modal Misalignment

Practical implications:



A Theory On the Value of Cross-Modal Misalignment

Zero-shot evaluation on OpenCLIP trained with LAION-400M dataset:



Key Takeaways of Contrastive VLMs

- Simple & scalable: dual encoders + ℓ_2 normalization + cosine similarity with learned temperature (τ) .
- Data scale & diversity beat cleanliness; web-scale noise is often tolerable (sometimes helpful).
- Strengths: excellent zero-shot transfer & retrieval; strong open-vocabulary classification.
- Caption quality matters (pretraining): identifies semantics shared across modalities; biased captions limit what can be learned.
- Prompts matter (inference): templates/ensembles and learned prompts (CoOp/CoCoOp) improve transfer.
- Foundation layer: strong vision encoder to pair with fusion/instruction-tuned models for multimodal reasoning.

Application: Generative Diffusion

Models Conditioned on VLM

Encoders

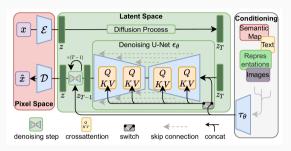
Latent Diffusion Models: Text Conditioning & Classifier-Free Guidance

How text conditions LDM

- Frozen CLIP text encoder → prompt embeddings.
- · U-Net conditioned via cross-attn.
- · CFG at sampling:

$$\hat{\varepsilon} = (1 - w) \varepsilon_{\theta}(x_t, t, \varnothing) + w \varepsilon_{\theta}(x_t, t, c)$$

 $w \uparrow = \text{stronger prompt adherence}.$



LDM: latent U-Net with a CLIP text encoder.

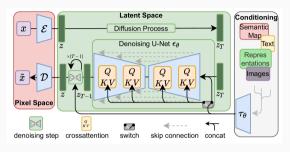
Latent Diffusion Models: Text Conditioning & Classifier-Free Guidance

How text conditions LDM

- Frozen CLIP text encoder → prompt embeddings.
- · U-Net conditioned via cross-attn.
- · CFG at sampling:

$$\hat{\varepsilon} = (1 - w) \varepsilon_{\theta}(x_t, t, \varnothing) + w \varepsilon_{\theta}(x_t, t, \varepsilon)$$

 $w \uparrow = \text{stronger prompt adherence}.$



LDM: latent U-Net with a CLIP text encoder.

"A street sign that reads
"Latent Diffusion"

"A combie in the susception:
half mouse half octopus"

"An image of an animal half mouse half octopus"

"An image of an animal half mouse half octopus"

"An image of an animal conscious neural network"

"A pointing of a chair that looks like an octopus"

"I owe generative models!"

LATENT DIFFUSION

"A pointing of a chair that looks like an octopus"

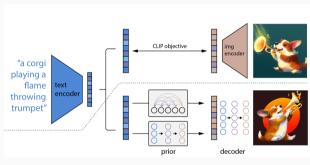
"I owe generative models!"

Generative Moode! 1

UnCLIP: Diffusion Conditioned on CLIP Vision Embeddings

How it works

- CLIP-V (frozen) defines image embedding z_{clip}.
- Text \rightarrow prior samples z_{clip} .
- Diffusion decoder generates $x \sim p(x | z_{\text{clip}})$.
- CFG: $\hat{\varepsilon} = (1 w)\varepsilon_{\theta}(x_t, t, \varnothing) + w\varepsilon_{\theta}(x_t, t, z_{\text{clip}})$
- Modes: text→image, image variations, edits.



UnCLIP pipeline: prior over CLIP- $z \rightarrow$ diffusion decoder.

A. Ramesh et al., 2022 (DALL: E 2 / unCLIP): prior over CLIP image embeddings + diffusion decoder.

UnCLIP: High-Fidelity "Imagined" Generation via CLIP-Vision Conditioning

Samples from DALL-E 2 / unCLIP (text → image): a prior samples *CLIP vision* embeddings, then a diffusion decoder renders high-fidelity scenes.

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

Ramesh et al., 2022 — unCLIP: prior over CLIP image embeddings ightarrow diffusion decoder.

How CLIP Representations Interface with Generators (At a Glance)

- Text-side conditioning: Use CLIP *text* embeddings as prompts/keys for conditioning modules (e.g., cross-attn keys/values).
- Vision-side priors: Map text to a prior over *CLIP vision* embeddings (z_{clip}); decode images conditioned on z_{clip} (UnCLIP-style).
- Retrieval cues: Nearest neighbors in CLIP space provide exemplar style/structure to condition or prompt the generator.
- **Personalization:** Learn new tokens/embeddings in CLIP *text* space (e.g., textual inversion) for concept-specific generation.
- **Diagnostics:** Monitor modality gap/prompt sensitivity in CLIP space when adapting generators.

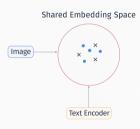
Multimodal LLMs: From

Representation to Reasoning

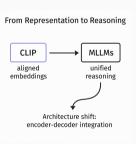
From Representation to Reasoning

Representation learning (alignment) ⇒ Reasoning with LLM backbones

Motivation: Sometimes real-world tasks can be complex



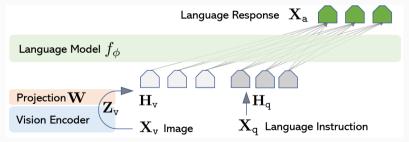
CLIP: shared image—text space zero-shot via prompts



MLLMs: instruction following multi-step reasoning

LLaVA: Visual Instruction Tuning

- Synthesize instructions from captions, build (image, prompt, response) pairs (QA, reasoning, visual grounding).
- Supervised tune a vision—LLM via the adaptor to map visual tokens into the LLM's reasoning space.
- Outcome: better instruction following, reasoning, and task generalization.



H. Liu et al., 2023 (LLaVA): Visual Instruction Tuning.

LLaVA: Visual Instruction Tuning

LLaVA recognizes Leonardo da Vinci's *Mona Lisa* and also explains humorous web parodies that mimic it.

Do you know who drew this painting?

The painting depicts a dog in a humorous situation, where it appears to be wearing a woman's dress and standing in front of a landscape. Although the artist of the painting is not explicitly identified, it could be a reference to the famous artist Da Vinci, known for his artistic works, including the Mona Lisa. The painting is likely a creative and comical take on the traditional portrait style, replacing a human figure with a dog dressed in a woman's clothing, making it an interesting and amusing visual piece.

H. Liu et al., 2023 (LLaVA): Visual Instruction Tuning.

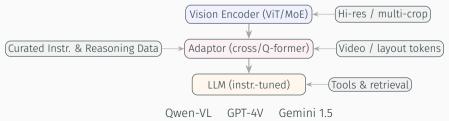
Production-Scale MLLMs: Qwen-VL, GPT-4V, Gemini 1.5

Common recipe

- Vision encoder \rightarrow adaptor \rightarrow Large Language Model
- Instruction tuning; multi-turn chat
- Captioning / Visual Question Answering / Optical Character Recognition / grounding

Differences

- Perception: high resolution, multi-crop, tables/charts
- Context: long context, multiple images or video
- Coverage: multilingual support, domain-specific tools



Challenges and Research Directions

Challenges	Research directions
Hallucination ————————————————————————————————————	→ Factuality and calibration
Lack of explicit grounding	Grounded perception and spatial reasoning
Data imbalance and causalconfusion	Compositional and causal learning
Entangled visual encoder representations	——→ Disentangled and causal encoders
Mismatch with human values	→ Human value alignment and safety

Wrap-Up and Discussions

The Journey in One Slide

Open Questions

 What defines model performance in the general-AI era?

 How do we quantify data quality for vision-language? How to design better supervision (data process + objectives)?

 How to evaluate reasoning & grounding reliably?

Recommended Reading

- Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021
- Jia et al., Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision, ICML 2021
- · Zhou et al., Conditional Prompt Learning for Vision-Language Models, CVPR 2022
- Cai et al., CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts, ECCV 2024
- Cai et al., On the Value of Cross-Modal Misalignment in Multimodal Representation Learning, NeurIPS 2025
- Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022
- · Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022
- · Liu et al., Visual Instruction Tuning, NeurIPS 2023
- Bai et al., Qwen-VL: AVersatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond, 2023

Thank You!

(Q & A)

Interested in VLMs? Email yichao.cai@adelaide.edu.au to discuss more.