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Backgrounds on Representation
Learning



What is a Representation?

- Raw data is high-dimensional &
unstructured.

- Captures meaningful semantic
factors.

- Representation = transformed, - Enables learning and

structured form. generalization.

Object:
a cat

5 action:
Compress Disentangle

wearing a sunglass

scene:
beach

Raw data

Entangled Representation Disentangled Representation
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Why Learn Representations?

- Reduce dimensionality.

- Remove noise and redundancy.

- Enable transfer across tasks.
- Capture underlying structure.

- Support interpretability.
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Predictive Tasks

- Examples:

- Classification

Regression

- Goal: predict target from input.

Detection / Segmentation

- Or even, complex reasoning tasks

Representation must be task-relevant and environment-shift robust
Evaluated by accuracy / error.
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Generative Tasks

- Goal: model or generate data.
- Examples:

Image / text generation

Inpainting, super-resolution
Diffusion / VAE / GANs

- Representation should capture data structure, if we desire contraollability.
Evaluated by fidelity, diversity, likelihood.
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A Latent Generative Perspective of Observational Data

Hypothesis — A Generative Perspective: Image-text pairs (or generally speaking,
observations) are generated from a shared latent space (scene semantics,

attributes, viewpoint, linguistic intent); our goal is to learn representations that
align with this latent space.

Observations

Features
Latent Variables
=gl Predictive — Invariant Features
Model

L | Disentangled Semantics

This guy shows a
> |beaming face. Hel > —> Causal Mechanisms

is a young adult.

Human face image from the CelebA-HQ dataset
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Motivation of Vision-Language
Modeling




Why Vision-Language Models (VLMs)?

- Machines see pixels (i.e., unstructured data) but often lack semantic
understanding; Language provides semantic structure and abstraction.

- Goal: learn a meaningful, modality-shared representation, that Enables
interpretable prediction & reasoning, e.g., retrieval, zero-shot, captioning, etc.

Captioning
Shared Embedding Space

Image — Vision Encoder} Grounding
Text — Text Encoder Serosshot
mimage x text Retrieval
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Families of VLMs

Image
Encoder

" Contrastive

Push for similarity

Text
Encoder

h for dissimilarity

A photo of a bird
A photo of a dog

Aphoto of a cat

Contrastive-Based VLMs

Fill masked images given text

Fill masked texts given image

Text-to-Image

Generator

Aphoto
ofadog

{Generative } |

Image-to-Text
Generator

Sopejo

ojoyd v

Florian Bordes, et al., 2024, An Introduction to V

ision-Language Modeling

- 9V
] 2 9>
=G Image 23 Multimodal Large-Language
2L Encoder g2
23 w8 Models (MLLM)
a3
Aphoto »
Image | ofa dog D 2
Encoder | g
+
[ Decoder image Masking-Based VLMs
Text I Encoder =
Encoder .|
N
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Fusion vs. Alignment: Two Ways to Combine Modalities

Y
ADELAIDE

Alignment (dual encoders; Fusion (cross-attention;
CLIP/ALIGN/SigLIP) LLaVA/Qwen-VL)
- Learn a shared image—-text embedding - Joint modeling of image & text tokens
space. (e.g, cross-attn / Q-Former).
- Contrastive training (InfoNCE; - Trained with task supervision (VQA,
multi-positive), web-scale. captioning, grounding).
- Strengths: highly scalable, fast - Strengths: better reasoning,
inference, strong zero-shot & retrieval. localization, stepwise answers.
- Limits: needs paired data; weaker - Limits: heavier compute/memory; less
fine-grained grounding unless task-agnostic reuse.
augmented.

Rule of thumb: Alignment for breadth & zero-shot.  Fusion for reasoning & grounding.

[m] = = =
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Key Ingredients of VLMs

Self-Attn + MLP

Vil patehes Self-Attn + MLP
Web-scale dataset
(1) Large-scale web data

Self-Attn + MLP
Zimg

Ztext

(3) Flexible architectures (ViT/Transformer)

}" ntrastive / pretext loss:\

Retrieval: rank by cos
(2) Contrastive or pretext objectives

Zero-shot: arg maxy, cos(z, Cr)

A

(4) Meaningful evaluation, e.g., Zero-shot & VQ
[m] = = =
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Contrastive Vision-Language
Foundation Models



m Web-scale Supervision

- Dual-encoder: ViT (or, CNNs) + text
Transformer.

- Data: 400M image-text pairs.

high waist sleeveless mini
soft jeans dress frilled
women ruffles casual
summer sundress short
denim beach dress cotton

DragonSpeed reveals
revised plans for
IndyCar, IMSA, ELMS

Man on moving
walkway at Dublin
Airport

https://huggingface.co/datasets/laion/relaion400m

- Trained with symmetric contrastive

loss.

- Emergent zero-shot transfer.

aussie pup EreRiy l
[

I Ty

I 1Ty
&=
In INTy

A. Radford, et al., 2021, CLIP

I

|

T, | T
LTy | 1Ty
LT, | Ty
LTy | Ty
INTy | INT3

Iy Ty

I Ty

13Ty

INTN

DA 12/39



What CLIP Learns

Learning objective - Symmetric contrastive loss (InfoNCE)

JADELAIDE
) - zZi - t P ZT j
Normalize: Z = V= Feature similarity: s; =
1] It T
_exp(sii) exp(Sj)
==y 3 o =720 zlog ”
Z] ] exp(SU) Z: 1 exp(Sij)
L =3(List+ Lisi) | with temperature 7 (learned)
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What CLIP Learns

Learning objective - Symmetric contrastive loss (InfoNCE)

Normalize: Z; = Z g Y Feature similarity: s; = ZT J
ozl gl =
C 1 ZN:| exp(Sii) C 1 ZN:| exp(sj;)
-t = T ogi t—)lzi* LI\ N/ VAN
N Z/ WEXp(SU) ZI Texp( )
L =3(List+ Lisi) | with temperature 7 (learned)
What CLIP facilitates?

Semantic alignment across-modality:

“red car”, “dog wearing hat”.
Compositional reasoning in embedding space.
Transferable representations for zero-shot tasks with text prompts

o

=
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Inference with CLIP

After training:

(2) Create dataset classifier from label text

P

Encoder J

(3) Use for zero-shot prediction

Ty

T
E =

Encoder

T3

Tn
—> I

LT, | 1T,

LT3

I Ty

Radford, et al,, 2021, CLIP

Limitations of CLIP;

- Noisy captions (reporting
bias).

- Poor domain transfer (e.g.,
medical, scientific).

Lacks causal or spatial
grounding.
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ALIGN: Scaling Beyond Clean Data

Pre-training

Contrastive Learning

Text |\ -»""I'mage
Encoder

—
7
P, .
= T,
AdaptonD,
l £ &S ﬁ
Encoder 0oo
Noisy Image-Text 2!
Data ImageNet (Deng et al. 2009) Visual Task Adaptatlon Benchmark (VTAB)
figure credit to (Krizhevsky et al. 2012) (Zhai et al. 2019)
Fine-grained Image-Text Retrieval Flickr30k (Plummer et al. 2015), MSCOCO(Chen et al. 2015),
Roppongi Hills Spider at night ‘original picture of
monet haystack’
'monet haystack png
haystack series
(A) Text -> Image Retrieval
C. Jia, etal, 2

monet art institute of
chicago”
2021, ALIGN

1 NS
(B) Image -> Text Retrieval (C) Image + Text -> Image Retrieval

=
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Improving Contrastive VLMs through
Post-Hoc Adaptation




CoOp: Improving CLIP Inference through Context Optimization

CoOp (Context Optimization) replaces hand-crafted text prompts in CLIP with

learnable context tokens: it freezes the image/text encoders and optimizes the
prompt vectors end-to-end on a small labeled set, yielding stronger

zero-/few-shot recognition without retraining CLIP.

[ learnable context |
g ]
i
V| Ve | : [CLASS] . }—- text encoder
airplane | butterfly ‘ - pizza
text
features
= ‘ e encoder ED D ey
scores
image
soi ] features maximize the score for the
g round.truth cas
K. Zhou, et al., 2022, Learning to Prompt for Vision-Language Models

Caltech101

ﬁ
e

Describable Textures (DTD)
P

Prompt

a[CLASS).

aphoto of [CLASS].

aphoto of a [CLASS].

[V]: [V]: ... [VIm [CLASS].
(a)

Prompt

aphoto of a [CLASS].

2 [CLASS] texture.

[V]: [V]z .. [V]u [CLASS].
(c)

u]
)]
|
u
it

a photo of a [CLASS] texture.

Accuracy
82.68

80.81
86.29

91.83

Accuracy
39.83

40.25
4232

63.58
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CoCoOp: Conditional Prompt Learning for Vision-Language Models

CoCoOp improves on CoOp by making the prompt input-conditional—a
lightweight meta-network generates prompt context from each image’s features,
yielding better generalization to unseen classes/domains while keeping CLIP

frozen.
[

sion-Language Models

context tokens

/

Text Encoder

A

K. Zhou, et a

2022, Conditional Prompt Learning for
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CLAP: Contrastive Learning with Augmented Prompts

Theory (von Kugelgen, et al.,

Motivation: Image-text share latent semantics = transfer across modalities;

enforcing invariances via text is more precise and efficient than editing images.
021)

« Contrastive learning with data augmentation;

Our findings
« All style changes through DA for pure content
factors.
style e

» The shared latent space of two-modalities;

style change

 High semanticity and logical structure in text data.

@ 1

style change

//
e/
NG - § Y
(<) v Y- (- o) yen\ N\
&) ) ©) &) ®©): &) ()
text imag label | augmented | image text
(a) Image augmentation
c - Latent content variable
s - Latent style variable

2/
label | augmented
x - Image data sample

t - Text data sample
Y. Cai, et al., 2024, CLAP

(b) Text Augmentation

gx - Image generating process
g - Text generating process

y - Label of a class
% - Changed view

=
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CLAP: Contrastive Learning with Augmented Prompts

Method: Adapt a pretrained CLIP with contrastive learning and augmented text

prompts (CLAP) to disentangle object-class semantics from nuisances, improving
downstream accuracy and robustness.

" . Do

@ i — InfoNCE & @ fi —> = e
H :{ - 3 . Bq
3 r=©) @ : E FlLE
-] § E E 3| dma g E Features

@ fe —#—> @—r £y }—» & N

- stop gradient — Rand lized Zero-intialized
CLAP Zero-shot inference
L6 {xi, %}y, 7) = 1 Zb 1UgM fr=argmin B L(feo 5 {t, ti )i, 7) + AL(Fe o £ {85,810, 1)
b &=t O e [(E(x,), £(%;)) /7] . {t},eD.

Y. Cai, et al,, 2024, CLAP

u]
o)
|
n
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CLAP: Contrastive Learning with Augmented Prompts

Qualitative results: Embeddings from baseline CLIP vs image-augmented
adaptation vs text/prompt-augmented adaptation.

"a photo of a bird"

"a photo of a car"
original

CLIP

image

augment.,

text
augment.

Y. Cai, et al., 2024, CLAP
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Theoretical Perspective on
Multimodal Contrastive Learning




Phenomenon: Images and Captions are Not Pefectly aligned

Motivation: Image-caption
datasets exhibit cross-modal
misalignment between visual
content and text (e.g,
underspecification, or
perturbation).

Can we model these noise
patterns formally? And, When do
they hurt vs. help (e.g.,
robustness, generalization)?

Cross-modal misalignment

Image space Text space
® . X
aligned >
o- X
°® \\\\\uDderspecifi’catioﬁ X X
® LT selection >
hallucination bias X
® image ¢ >

X text regularizes / robust

label shift / harmful

ST EraEr B
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Standard MMCL loss:

What Does Multimodal Contrastive Learning Optimize?

er(fx(xi).fe(ti)) /™
LumeL (fx, ft) = K [l

Og | eﬁ(jX(Xi)7jt(t/‘))/7
§ : K(Jx(Xj )] t

8 >, en(ﬂ(xn,n(u))ﬁ}

Lume. = E K00 = fOIF = 3[HE)) + HED)]
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Standard MMCL loss:

What Does Multimodal Contrastive Learning Optimize?

er(fx(xi).fe(ti)) /™
LumeL (fx, ft) = K [l

O | eN(JX(Xf)vjt(tf))/T
g § : K{Jx\Xj), t T

8 }:jenqx&>ﬁ<u»/7}

Lume. = E K00 = fOIF = 3[HE)) + HED)]
Interpretation: Contrastive Learning =
- Alignment: pull paired features together
LIf) = ()12
- Entropy maximization: preserve information within each modality

T H(fx(x)), T H(fe(t))
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A Theory On the Value of Cross-Modal Misalignment

Theory framework: Y. Cai et al., 2025 introduce a latent variable model where each
modality is generated from shared semantics with modality-specific biases.

Selection Bias (8): Shared semantics excluded from the text modality.
Perturbation Bias (p): Spurious or altered semantics added to text.

selection bias

perturbation bias {shape, size, color} I, =01, = {shape,size}
A large size cat.

T, =0T, = {shape, color}
A cat that is black color,

1, = {color} | I; = {shape, color}

image

A cat that is gray color.
text caption

image

text under misalignment

Illustration of our latent variable model with semantic misalignment.

Main Result: Contrastive learning consistently identifies unbiased shared semantics, regardless of latent causal structure,
explaining why CLIP-like models succeed despite noise.
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Practical implications

A Theory On the Value of Cross-Modal Misalignment

Caption policy

Faithful captions
(complete & factual)

Learned features

Noisy / biased captions
{omitted or incorrect)

Controlled perturbation /
(with proper rep capacity)

How caption policy shapes learned features and outcomes

Outcomes
| ifiabl. 5
\ibed dentifiable reps stable
t AL features
rue semantics | — /| Robustness
(00D / domain shift)
7
/’/ clean
4 ti
¥ W;Ee reps. sempnties
A ~ .
snppress
nuls.ance variables / o

Interpretability
& fairness

Capacity of Information Bottleneck

Hallucination /
fragile performance
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A Theory On the Value of Cross-Modal Misalignment

Zero-shot evaluation on OpenCLIP trained with LAION-400M dataset:

Percentage (%)

Macro F1 Score (%)

o

-

w

N

21622
1.6288
1.1747

N

0.8140

0.
El=

- -

.6f14 0. 3 0.5284 0.4682
0.211_47 DJT?U 0.0935 0.0312 0.0238 0.0118 0.0003
L @ &aid I

Distribution
Median value
Mean value

Color Object Clothing Food Vehicle Scene Weather Animal Role Texture Trait

POV Emot. Postproc. Stere.

97.6989 7.0

Animal Scene Vehicle

Food

Object Clothing Color Weather Role Postproc. Stere.

Texture POV

&

Trait

. ViT-B-32
ViT-L-14

Emot
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Key Takeaways of Contrastive VLMs

- Simple & scalable: dual encoders + ¢, normalization + cosine similarity with
learned temperature (7).

- Data scale & diversity beat cleanliness; web-scale noise is often tolerable
(sometimes helpful).

- Strengths: excellent zero-shot transfer & retrieval; strong open-vocabulary
classification.

- Caption quality matters (pretraining): identifies semantics shared across
modalities; biased captions limit what can be learned.

- Prompts matter (inference): templates/ensembles and learned prompts
(CoOp/CoCoOp) improve transfer.

- Foundation layer: strong vision encoder to pair with
fusion/instruction-tuned models for multimodal reasoning.

o = =
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Application: Generative Diffusion
Models Conditioned on VLM
Encoders




How text conditions LDM

- Frozen CLIP text encoder - prompt
embeddings.

- U-Net conditioned via cross-attn.
- CFG at sampling:

E=(1—w)eo(xe,t, @) + weg(Xt,t,C)

w 1 = stronger prompt adherence.

Latent Space
a I Diffusion Process ————
z

Denoising U-Net €g 2r

C

emanti
Ma
Text

Repres
entations

bq

denoising step crossattention  switch  skip connection concat

To

—

LDM: latent U-Net with a CLIP text encoder.

it
N)
yel
?
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Latent Diffusion Models: Text Conditioning & Classifier-Free Guidance

THE U ia

Y
ADELAIDE

How text conditions LDM

Latent Space Conditioni 9

Diffusion Process ———— emanti

Frozen CLIP text encoder - prompt N EMH
enoising U-Net €g 2r Text

embeddings.

Repres
entations

U-Net conditioned via cross-attn.
- CFG at sampling:

To

E=(1—w)eo(xe,t, @) + weg(Xt,t,C)

denoising step crossattention  switch  skip connection concat —

w 1 = stronger prompt adherence. LDM: latent U-Net with a CLIP text encoder.

‘A street sign that reads A zombie in the “An image of an animal ‘An illustration of a slightly “A painting of a

"A watercolor painting of a A shirt with the inscription:
half mouse half octopus’ conscious neural network’

“Latent Diffusion” style of Picasso’ squirrel eating a burger’ chair that looks like an octopus’  “I love generative models!” "

.
[ LATENT
_DIFFUSION

R.R

N\l

mbach et a
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UnCLIP: Diffusion Conditioned on CLIP Vision Embeddings

How it works

- CLIP-V (frozen) defines image
embedding Zjp.

. CLIP objective H img
- Text—prior samples Zp. ofl i
. . “a corgi O
- Diffusion decoder generates playing a -
flame
X"’D(X|Zdip)~ throwing ] : :O
trumpet” 5560 HS ¢
© CFG:é= Sooco BCC.
...................................... O ( Ho ¢
(1= w)eg (X, t, @) + Weo (X, t, Zeiip) 8-0-or— B° ¢
- Modes: text—image, image s —
variations edits UnCLIP pipeline: prior over CLIP-z — diffusion decoder.
A. Ramesh et al., 2022 (DALLE 2 / unCLIP): prior over CLIP image embeddings + diffusion decoder.
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Samples from DALLE 2 / unCLIP (text - image): a prior samples CLIP vision
embeddings, then a diffusion decoder renders high-fidelity scenes.

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula
Ramesh et al,, 2022 — unCLIP: prior over CLIP image embeddings — diffusion decoder

=] F = E E DA™ 9/39



How CLIP Representations Interface with Generators (At a Glance)

FADELAIDE
- Text-side conditioning: Use CLIP text embeddings as prompts/keys for
conditioning modules (e.g., cross-attn keys/values).

+ Vision-side priors: Map text to a prior over CLIP vision embeddings (zp);
decode images conditioned on z;, (UnCLIP-style).

- Retrieval cues: Nearest neighbors in CLIP space provide exemplar
style/structure to condition or prompt the generator.

- Personalization: Learn new tokens/embeddings in CLIP text space (e.g.,
textual inversion) for concept-specific generation.

- Diagnostics: Monitor modality gap/prompt sensitivity in CLIP space when
adapting generators.

u]
o)
|
n
it
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Multimodal LLMs: From
Representation to Reasoning




From Representation to Reasoning

Give the dog a bone.

Representation learning (alignment) = Reasoning with LLM backbones

Motivation: Sometimes
real-world tasks can be

complex

Shared Embedding Space

Image

Text Encoder

CLIP: shared image-text space

zero-shot via prompts

From Representation to Reasoning

CLIP |—>| MLLMs
aligned unified
embeddings reasoning
Architecture shift:

encoder-decoder integration

MLLMs: instruction
following multi-step

reasoning

DA 31/39



LLaVA: Visual Instruction Tuning

- Synthesize instructions from captions, build (image, prompt, response) pairs
(QA, reasoning, visual grounding).

- Supervised tune a vision-LLM via the adaptor to map visual tokens into the
LLM’s reasoning space.

- Outcome: better instruction following, reasoning, and task generalization.

Language Response Xa Q Q Q

Language Model f¢
Q A0 BaA
z, H P,

Xv Image Xq Language Instruction

Projection W

Vision Encoder

H. Liu et al,, 2023 (LLaVA): Visual Instruction Tuning.
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LLaVA: Visual In

truction Tuning

LLaVA recognizes Leonardo da Vinci’s Mona Lisa and also explains humorous web
parodies that mimic it.

User
Do you know who drew this painting?
The painting depicts a dog in a humorous situation, where it appears to be wearing a woman's dress and standing in front of a landscape.
Although the artist of the painting is not explicitly identified, it could be a reference to the famous artist Da Vinci, known for his artistic works,
including the Mona Lisa. The painting is likely a creative and comical take on the traditional portrait style, replacing a human figure with a dog
LLaVA | dressedinawoman's clothing, making it an interesting and amusing visual piece.
H. Liu et al., 2023 (LLaVA): Visual Instruction Tuning.
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Production-Scale MLLMs: Qwen-VL, GPT4V, Gemini 1.5

JADELAIDE
Common recipe Differences
- Vision encoder — adaptor — Large - Perception: high resolution, multi-crop,
Language Model tables/charts
- Instruction tuning; multi-turn chat - Context: long context, multiple images
- Captioning / Visual Question Answering or video
|/ Optical Character Recognition / - Coverage: multilingual support,
grounding domain-specific tools

[Vision Encoder(viT/MoE)] Hi-res / multi-crop

[Curated Instr. & Reasoning Data] [Adaptor (cross/Q—former)] (Video / layout tokens]

[ LLM (instr-tuned) ]
Qwen-VL GPT-4V  Gemini 1.5

o = =
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Challenges and Research Directions

Challenges

Hallucination

Lack of explicit grounding

Data imbalance and causal
confusion

sentations

Entangled visual encoder repre-

Mismatch with human values

Research directions

Factuality and calibration
Grounded perception and spatial rea-
soning

Compositional and causal learning

Disentangled and causal encoders

Human value alignment and safety
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Wrap-Up and Discussions




The Journey in One Slide

Captioning Alignment

paired igge—text CLIP/ALI?\I space
Reasoning (MLLMs) Applications

encoder%iptor%LLM Q

diffusion, retrieval, grounding

Adaptation

O

CoOp/CoCoOp/CLAP

Misalignment

O

theory: helps vs harms
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Open Questions

- What defines model

performance in the general-Al
era?

- How to design better supervision
(data process + objectives)?

How to evaluate reasoning &
- How do we quantify data quality grounding reliably?
for vision-language?
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Closing

Thank You !

(Q &A)

Interested in VLMs? Email yichao.cai@adelaide.edu.au to discuss more.
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