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Backgrounds on Representation
Learning



What is a Representation?

• Raw data is high-dimensional &
unstructured.

• Representation = transformed,
structured form.

• Captures meaningful semantic
factors.

• Enables learning and
generalization.

Raw data Disentangled Representation

Object:
a cat

action:
wearing a sunglass

scene:
beach

Entangled Representation

Compress Disentangle
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Why Learn Representations?

• Reduce dimensionality.
• Remove noise and redundancy.
• Capture underlying structure.

• Enable transfer across tasks.
• Support interpretability.
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Predictive Tasks

• Goal: predict target from input.
• Examples:

• Classification
• Regression
• Detection / Segmentation
• Or even, complex reasoning tasks

• Representation must be task-relevant and environment-shift robust.
• Evaluated by accuracy / error.
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Generative Tasks

• Goal: model or generate data.
• Examples:

• Image / text generation
• Inpainting, super-resolution
• Diffusion / VAE / GANs

• Representation should capture data structure, if we desire contraollability.
• Evaluated by fidelity, diversity, likelihood.
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A Latent Generative Perspective of Observational Data

Hypothesis – A Generative Perspective: Image–text pairs (or generally speaking,
observations) are generated from a shared latent space (scene semantics,
attributes, viewpoint, linguistic intent); our goal is to learn representations that
align with this latent space.

Human face image from the CelebA-HQ dataset.
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Motivation of Vision-Language
Modeling



Why Vision-Language Models (VLMs)?

• Machines see pixels (i.e., unstructured data) but often lack semantic
understanding; Language provides semantic structure and abstraction.

• Goal: learn a meaningful, modality-shared representation, that Enables
interpretable prediction & reasoning, e.g., retrieval, zero-shot, captioning, etc.

Shared Embedding Space
Image→ Vision Encoder

Text→ Text Encoder

×
×

×
×

×

Captioning

Grounding

Retrieval

Zero-shot

image × text
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Families of VLMs

Masking-Based VLMs

Generative-Based VLMs

Multimodal Large-Language
Models (MLLM)

Contrastive-Based VLMs

Florian Bordes, et al., 2024,  An Introduction to Vision-Language Modeling.
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Fusion vs. Alignment: Two Ways to Combine Modalities

Alignment (dual encoders;
CLIP/ALIGN/SigLIP)

• Learn a shared image–text embedding
space.

• Contrastive training (InfoNCE;
multi-positive), web-scale.

• Strengths: highly scalable, fast
inference, strong zero-shot & retrieval.

• Limits: needs paired data; weaker
fine-grained grounding unless
augmented.

Fusion (cross-attention;
LLaVA/Qwen-VL)

• Joint modeling of image & text tokens
(e.g., cross-attn / Q-Former).

• Trained with task supervision (VQA,
captioning, grounding).

• Strengths: better reasoning,
localization, stepwise answers.

• Limits: heavier compute/memory; less
task-agnostic reuse.

Rule of thumb: Alignment for breadth & zero-shot. Fusion for reasoning & grounding.
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Key Ingredients of VLMs

×

Web-scale dataset

(1) Large-scale web data

zimg

ztext

××
×Contrastive / pretext loss

(2) Contrastive or pretext objectives

ViT patches

Self-Attn + MLP

Self-Attn + MLP

Self-Attn + MLP

(3) Flexible architectures (ViT/Transformer)

×
Retrieval: rank by cos

Zero-shot: argmaxk cos(z, ck)

(4) Meaningful evaluation, e.g., Zero-shot & VQA
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Contrastive Vision-Language
Foundation Models



CLIP: Learning from Web-scale Supervision

• Dual-encoder: ViT (or, CNNs) + text
Transformer.

• Data: 400M image–text pairs.

• Trained with symmetric contrastive
loss.

• Emergent zero-shot transfer.

A. Radford, et al., 2021, CLIP

high waist sleeveless mini
soft jeans dress frilled
women ruffles casual
summer sundress short
denim beach dress cotton

DragonSpeed reveals
revised plans for
IndyCar, IMSA, ELMS

Man on moving
walkway at Dublin
Airport

https://huggingface.co/datasets/laion/relaion400m
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What CLIP Learns

Learning objective - Symmetric contrastive loss (InfoNCE):

Normalize: z̃i =
zi
∥zi∥

, t̃j =
tj

∥tj∥
, Feature similarity: sij =

z̃⊤i t̃j
τ

Li→t = − 1
N

N∑
i=1

log
exp(sii)∑N
j=1 exp(sij)

, Lt→i = − 1
N

N∑
j=1

log
exp(sjj)∑N
i=1 exp(sij)

L = 1
2
(
Li→t + Lt→i

)
with temperature τ (learned).

What CLIP facilitates?

• Semantic alignment across-modality: “red car”, “dog wearing hat”.
• Compositional reasoning in embedding space.
• Transferable representations for zero-shot tasks with text prompts.
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Inference with CLIP

After training:

A. Radford, et al., 2021, CLIP

Limitations of CLIP:
• Noisy captions (reporting
bias).

• Poor domain transfer (e.g.,
medical, scientific).

• Lacks causal or spatial
grounding.
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ALIGN: Scaling Beyond Clean Data

Larger-Scale Noisy web data (1.8 B)⇒ More robust representations.

C. Jia, et al., 2021, ALIGN
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Improving Contrastive VLMs through
Post-Hoc Adaptation



CoOp: Improving CLIP Inference through Context Optimization

CoOp (Context Optimization) replaces hand-crafted text prompts in CLIP with
learnable context tokens: it freezes the image/text encoders and optimizes the
prompt vectors end-to-end on a small labeled set, yielding stronger
zero-/few-shot recognition without retraining CLIP.

K. Zhou, et al., 2022, Learning to Prompt for Vision-Language Models
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CoCoOp: Conditional Prompt Learning for Vision-Language Models

CoCoOp improves on CoOp by making the prompt input-conditional—a
lightweight meta-network generates prompt context from each image’s features,
yielding better generalization to unseen classes/domains while keeping CLIP
frozen.

K. Zhou, et al., 2022, Conditional Prompt Learning for Vision-Language Models
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CLAP: Contrastive Learning with Augmented Prompts

Motivation: Image–text share latent semantics⇒ transfer across modalities;
enforcing invariances via text is more precise and efficient than editing images.

Y. Cai, et al., 2024, CLAP 18 / 39



CLAP: Contrastive Learning with Augmented Prompts

Method: Adapt a pretrained CLIP with contrastive learning and augmented text
prompts (CLAP) to disentangle object-class semantics from nuisances, improving
downstream accuracy and robustness.

Y. Cai, et al., 2024, CLAP
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CLAP: Contrastive Learning with Augmented Prompts

Qualitative results: Embeddings from baseline CLIP vs image-augmented
adaptation vs text/prompt-augmented adaptation.

Y. Cai, et al., 2024, CLAP 20 / 39



Theoretical Perspective on
Multimodal Contrastive Learning



Phenomenon: Images and Captions are Not Pefectly aligned

Motivation: Image–caption
datasets exhibit cross-modal
misalignment between visual
content and text (e.g.,
underspecification, or
perturbation).

Can we model these noise
patterns formally? And, When do
they hurt vs. help (e.g.,
robustness, generalization)?
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What Does Multimodal Contrastive Learning Optimize?

Standard MMCL loss:

LMMCL(fx, ft) = − 1
2K

K∑
i=1

[
log

eκ(fx(xi),ft(ti))/τ∑
j eκ(fx(xi),ft(tj))/τ

+ log
eκ(fx(xi),ft(ti))/τ∑
j eκ(fx(xj),ft(ti))/τ

]
Asymptotically (large K):

LMMCL =⇒ E ∥fx(x)− ft(t)∥2 − 1
2

[
H(fx(x)) + H(ft(t))

]

Interpretation: Contrastive Learning =

• Alignment: pull paired features together

↓ ∥fx(x)− ft(t)∥2

• Entropy maximization: preserve information within each modality

↑ H(fx(x)), ↑ H(ft(t))
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A Theory On the Value of Cross-Modal Misalignment

Theory framework: Y. Cai et al., 2025 introduce a latent variable model where each
modality is generated from shared semantics with modality-specific biases.
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A Theory On the Value of Cross-Modal Misalignment

Practical implications:
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A Theory On the Value of Cross-Modal Misalignment

Zero-shot evaluation on OpenCLIP trained with LAION-400M dataset:
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Key Takeaways of Contrastive VLMs

• Simple & scalable: dual encoders + ℓ2 normalization + cosine similarity with
learned temperature (τ ).

• Data scale & diversity beat cleanliness; web-scale noise is often tolerable
(sometimes helpful).

• Strengths: excellent zero-shot transfer & retrieval; strong open-vocabulary
classification.

• Caption quality matters (pretraining): identifies semantics shared across
modalities; biased captions limit what can be learned.

• Prompts matter (inference): templates/ensembles and learned prompts
(CoOp/CoCoOp) improve transfer.

• Foundation layer: strong vision encoder to pair with
fusion/instruction-tuned models for multimodal reasoning.
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Application: Generative Diffusion
Models Conditioned on VLM
Encoders



Latent Diffusion Models: Text Conditioning & Classifier-Free Guidance

How text conditions LDM
• Frozen CLIP text encoder → prompt
embeddings.

• U-Net conditioned via cross-attn.
• CFG at sampling:

ε̂ = (1− w) εθ(xt, t,∅) + w εθ(xt, t, c)

w ↑ = stronger prompt adherence. LDM: latent U-Net with a CLIP text encoder.

R. Rombach et al., 2022, High-Resolution Image Synthesis with Latent Diffusion Models.

27 / 39



Latent Diffusion Models: Text Conditioning & Classifier-Free Guidance

How text conditions LDM
• Frozen CLIP text encoder → prompt
embeddings.

• U-Net conditioned via cross-attn.
• CFG at sampling:

ε̂ = (1− w) εθ(xt, t,∅) + w εθ(xt, t, c)

w ↑ = stronger prompt adherence. LDM: latent U-Net with a CLIP text encoder.

R. Rombach et al., 2022, High-Resolution Image Synthesis with Latent Diffusion Models. 27 / 39



UnCLIP: Diffusion Conditioned on CLIP Vision Embeddings

How it works
• CLIP-V (frozen) defines image
embedding zclip.

• Text→prior samples zclip.
• Diffusion decoder generates
x∼p(x | zclip).

• CFG: ε̂ =

(1− w)εθ(xt, t,∅) + w εθ(xt, t, zclip)

• Modes: text→image, image
variations, edits. UnCLIP pipeline: prior over CLIP-z→ diffusion decoder.

A. Ramesh et al., 2022 (DALL·E 2 / unCLIP): prior over CLIP image embeddings + diffusion decoder.

28 / 39



UnCLIP: High-Fidelity “Imagined” Generation via CLIP–Vision Conditioning

Samples from DALL·E 2 / unCLIP (text → image): a prior samples CLIP vision
embeddings, then a diffusion decoder renders high-fidelity scenes.

Ramesh et al., 2022 — unCLIP: prior over CLIP image embeddings→ diffusion decoder.
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How CLIP Representations Interface with Generators (At a Glance)

• Text-side conditioning: Use CLIP text embeddings as prompts/keys for
conditioning modules (e.g., cross-attn keys/values).

• Vision-side priors: Map text to a prior over CLIP vision embeddings (zclip);
decode images conditioned on zclip (UnCLIP-style).

• Retrieval cues: Nearest neighbors in CLIP space provide exemplar
style/structure to condition or prompt the generator.

• Personalization: Learn new tokens/embeddings in CLIP text space (e.g.,
textual inversion) for concept-specific generation.

• Diagnostics: Monitor modality gap/prompt sensitivity in CLIP space when
adapting generators.
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Multimodal LLMs: From
Representation to Reasoning



From Representation to Reasoning

Representation learning (alignment)⇒ Reasoning with LLM backbones

Motivation: Sometimes
real-world tasks can be

complex

CLIP: shared image–text space
zero-shot via prompts

MLLMs: instruction
following multi-step

reasoning
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LLaVA: Visual Instruction Tuning

• Synthesize instructions from captions, build (image, prompt, response) pairs
(QA, reasoning, visual grounding).

• Supervised tune a vision–LLM via the adaptor to map visual tokens into the
LLM’s reasoning space.

• Outcome: better instruction following, reasoning, and task generalization.

H. Liu et al., 2023 (LLaVA): Visual Instruction Tuning.

32 / 39



LLaVA: Visual Instruction Tuning

LLaVA recognizes Leonardo da Vinci’s Mona Lisa and also explains humorous web
parodies that mimic it.

H. Liu et al., 2023 (LLaVA): Visual Instruction Tuning.
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Production-Scale MLLMs: Qwen-VL, GPT-4V, Gemini 1.5

Common recipe
• Vision encoder→ adaptor→ Large
Language Model

• Instruction tuning; multi-turn chat
• Captioning / Visual Question Answering
/ Optical Character Recognition /
grounding

Differences
• Perception: high resolution, multi-crop,
tables/charts

• Context: long context, multiple images
or video

• Coverage: multilingual support,
domain-specific tools

Vision Encoder (ViT/MoE)

Adaptor (cross/Q-former)

LLM (instr.-tuned)

Hi-res / multi-crop

Video / layout tokens

Tools & retrieval

Curated Instr. & Reasoning Data

Qwen-VL GPT-4V Gemini 1.5
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Challenges and Research Directions

Challenges Research directions

Hallucination

Lack of explicit grounding

Data imbalance and causal
confusion

Entangled visual encoder repre-
sentations

Mismatch with human values

Factuality and calibration

Grounded perception and spatial rea-
soning

Compositional and causal learning

Disentangled and causal encoders

Human value alignment and safety

35 / 39



Wrap-Up and Discussions



The Journey in One Slide

Captioning

paired image–text

Alignment

CLIP/ALIGN space

Adaptation

CoOp/CoCoOp/CLAP

Misalignment

theory: helps vs harms

Applications

diffusion, retrieval, grounding

Reasoning (MLLMs)

encoder→adaptor→LLM
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Open Questions

• What defines model
performance in the general-AI
era?

• How do we quantify data quality
for vision–language?

• How to design better supervision
(data process + objectives)?

• How to evaluate reasoning &
grounding reliably?
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Closing

Thank You !

(Q & A)

Interested in VLMs? Email yichao.cai@adelaide.edu.au to discuss more.

39 / 39

mailto:yichao.cai@adelaide.edu.au

	Backgrounds on Representation Learning
	Motivation of Vision-Language Modeling
	Contrastive Vision-Language Foundation Models
	Improving Contrastive VLMs through Post-Hoc Adaptation
	Theoretical Perspective on Multimodal Contrastive Learning
	Application: Generative Diffusion Models Conditioned on VLM Encoders
	Multimodal LLMs: From Representation to Reasoning
	Wrap-Up and Discussions

